
(a) Left graph (b) Right graph.

Figure 1: Text pertaining to both graphs,1(a)and 1(b).

1 TODO Side by side figures in org-mode for dif-
ferent outputs

Occasionally, someone wants side by side figures with subcaptions that
have individually referenceable labels. This is not too hard in LATEX, and
there is a solution here: http://www.johndcook.com/blog/2009/01/14/
how-to-display-side-by-side-figurs-in-latex/.

We can create side by side figures in raw LATEX like this (note however,
this will not show up in html export):

And in our text we can refer to the overall Figure 1, or the subfigures
Figure 1(a) or Figure 1(b). This works fine if your end goal is LATEX export.
It does not work fine if you want to consider HTML or some other output.

So, here we consider how we could remove the LATEX dependency by
representing the figures in a sexp data structure, for example something like
this. I change the labels and captions a bit so they are actually distinguish-
able.

1 (figure ()
2 (subfigure ’("Left graph from sexp." (label "fig:sa"))
3 (includegraphics ’((width . "3in"))
4 "images/cos-plot.png"))
5 (enskip)
6 (subfigure ’("Right graph from sexp" (label "fig:sb"))
7 (includegraphics ’((width . "3in"))
8 "images/eos-uncertainty.png"))

1

http://www.johndcook.com/blog/2009/01/14/how-to-display-side-by-side-figurs-in-latex/
http://www.johndcook.com/blog/2009/01/14/how-to-display-side-by-side-figurs-in-latex/

(a) Left graph from sexp. (b) Right graph from sexp

Figure 2: Text pertaining to both graphs from a sexp, 2(a) and 2(b).

9 (caption
10 "Text pertaining to both graphs from a sexp, " (ref "fig:sa")
11 " and " (ref "fig:sb") "." (label "figs12")))

"emacs-lisp"

This doesn’t look much worse than the LATEX code itself. It might not
seem useful right away, but imagine if this was really code that could evaluate
to the format we want. Remember the sexp bibtex entry that could evaluate
to bibtex, json or xml? Let’s look at this here. What we consider is kind of
like http://oremacs.com/2015/01/23/eltex/, but we could include other
kinds of exports if we wanted.

Here is our special block in org-mode. It should render roughly as side
by side images in LATEX and HTML.

Now, we need a function to format the sexp block for export. It is easy,
we just eval the contents of the block. We do assume here there is just one
sexp to evaluate. This function will handle all special blocks, but we only
want to do something different for the sexp blocks.

1 (defun sb-format (sb contents info)
2 (cond
3 ((string= "SEXP" (org-element-property :type sb))
4 (eval (read (buffer-substring
5 (org-element-property :contents-begin sb)
6 (org-element-property :contents-end sb)))))

2

http://kitchingroup.cheme.cmu.edu/blog/2015/06/10/A-sexp-version-of-a-bibtex-entry/
http://oremacs.com/2015/01/23/eltex/

7 (t
8 contents)))))

sb-format

All that is left is to define the functions. We do that next.

1.1 Latex export

We need to define a function for each piece of the data structure that will
evaluate to a string. Here are three easy ones.

1 (defun label (arg)
2 (format "\\label{%s}" arg))
3
4 (defun ref (arg)
5 (format "\\ref{%s}" arg))
6
7 (defun caption (&rest body)
8 (format "\\caption{%s}"
9 (mapconcat ’eval body "")))

10
11 (caption
12 "Text pertaining to both graphs, " (ref "fig:a")
13 " and " (ref "fig:b") "." (label "fig12"))

\caption{Text pertaining to both graphs, \ref{fig:a} and \ref{fig:b}.\label{fig12}}

Now, for includegraphics, we allow options and a path. The options we
assume are in an a-list.

1 (defun includegraphics (options path)
2 (format "\\includegraphics%s{%s}"
3 (if options
4 (format "[%s]"
5 (mapconcat (lambda (ccell)
6 (format "%s=%s"
7 (car ccell)
8 (cdr ccell)))
9 options

10 ","))
11 "")
12 path))
13
14 (includegraphics ’((width . "3in"))
15 "images/eos-uncertainty.png")

\includegraphics[width=3in]{images/eos-uncertainty.png}

3

Similarly for subfigure, we have options, and then a body of expressions.
The options here are just expressions that should evaluate to strings. This
is not consistent with the way we do options in includegraphics. This is
just proof of concept work, so I don’t know if this inconsistency is really
problematic yet, or insufficient for all options.

1 (defun subfigure (options &rest body)
2 (format "\\subfigure%s{%s}"
3 (if options
4 (format "[%s]"
5 (mapconcat ’eval options ""))
6 "")
7 (mapconcat ’eval body "")))
8
9 (subfigure ’("Right graph" (label "fig:b"))

10 (includegraphics ’((width . "3in"))
11 "images/eos-uncertainty.png"))

\subfigure[Right graph\label{fig:b}]{\includegraphics[width=3in]{images/eos-uncertainty.png}}

Now, we put the whole figure together.

1 (defun figure (options &rest body)
2 (format "\\begin{figure}
3 %s
4 \\end{figure}"
5 (mapconcat ’eval body "\n")))
6
7 (defun enskip () "\\enskip")

enskip

Now, we would have a block like this, and we can evaluate it.

1 (figure ()
2 (subfigure ’("Left graph from sexp." (label "fig:ssa"))
3 (includegraphics ’((width . "3in"))
4 "images/cos-plot.png"))
5 (enskip)
6 (subfigure ’("Right graph from sexp" (label "fig:ssb"))
7 (includegraphics ’((width . "3in"))
8 "images/eos-uncertainty.png"))
9 (caption

10 "Text pertaining to both graphs from a sexp, " (ref "fig:ssa")
11 " and " (ref "fig:ssb") "." (label "figss12")))

4

(a) Left graph from sexp. (b) Right graph from sexp

Figure 3: Text pertaining to both graphs from a sexp, 3(a) and 3(b).

Not the most beautiful LATEX ever, but it works. Now, to get this to
work, we need to handle our special sexp blocks differently. We do that
with a new derived backend.

1 (org-export-define-derived-backend ’my-latex ’latex
2 :translate-alist ’((special-block . sb-format)))
3
4 (org-latex-compile (org-export-to-file ’my-latex "custom-sb-export.tex"))
5 (org-open-file "custom-sb-export.pdf")

1.2 HTML functions

We need to define each element and its HTML output.

1 (defun label (arg)
2 (format "" arg))
3
4 (defun ref (arg)
5 (format "%s" arg arg))
6
7 (defun caption (&rest body)
8 (format "<caption>%s</caption>"
9 (mapconcat ’eval body "")))

10
11 (caption
12 "Text pertaining to both graphs, " (ref "fig:a")
13 " and " (ref "fig:b") "." (label "fig12"))

5

<caption>Text pertaining to both graphs, fig:a and fig:b.</caption>

We will ignore options for the includegraphics html output. We would
need to specify some way to do unit conversions for html. Here we fix the
width.

1 (defun includegraphics (options path)
2 (format ""
3 path))
4
5 (includegraphics ’((width . "3in"))
6 "images/eos-uncertainty.png")

We wrap a subfigure in a table cell.

1 (defun subfigure (options &rest body)
2 (format "<td>%s%s</td>"
3 (mapconcat ’eval body "")
4 (when options
5 (concat "
"
6 (mapconcat ’eval options "")))))
7
8 (subfigure ’("Right graph" (label "fig:b"))
9 (includegraphics ’((width . "3in"))

10 "images/eos-uncertainty.png"))

<td>
Right graph</td>

We assume we can put the images in a single row.

1 (defun figure (options &rest body)
2 (format "<table>
3 <tr>%s</tr>
4 </table>"
5 (mapconcat ’eval body "\n")))
6
7 (defun enskip () "")

enskip

Now, here is our specification.

6

1 (figure ()
2 (subfigure ’("Left graph" (label "fig:a"))
3 (includegraphics ’((width . "3in"))
4 "images/cos-plot.png"))
5 (enskip)
6 (subfigure ’("Right graph" (label "fig:b"))
7 (includegraphics ’((width . "3in"))
8 "images/eos-uncertainty.png"))
9 (caption

10 "Text pertaining to both graphs, " (ref "fig:a")
11 " and " (ref "fig:b") "." (label "fig12")))

And our derived backend for HTML.

1 (org-export-define-derived-backend ’my-html ’html
2 :translate-alist ’((special-block . sb-format)))
3
4 (browse-url (org-export-to-file ’my-html "custom-sb-export.html"))

#<process open custom-sb-export.html>

1.3 Summary thoughts

I think I like the idea. Obviously there are differences between what is
possible between LATEX and HTML, notably the attributes that may or may
not be supported between them, including the units of the width, labels,
and references. I still have not figured out an elegant way to switch between
LATEX and HTML exports since there is basically one set of functions that
need different outputs under different conditions.

For small things, you could achieve this with inline emacs-lisp src blocks,
but I think those are limited to one liners. Alternatively, you could probably
get by with output from an actual src block, but you would have to make
sure it executed during export (I turn this off by default).

7

	TODO Side by side figures in org-mode for different outputs
	Latex export
	HTML functions
	Summary thoughts

